Mark As Completed Discussion

To implement stochastic, linear regression, and standard deviation calculations in C++ for data analysis, you can use various mathematical formulas and algorithms.

Let's start with calculating the mean and standard deviation of a set of data using C++:

TEXT/X-C++SRC
1#include <iostream>
2#include <vector>
3#include <cmath>
4
5// Function to calculate the mean of a vector
6double calculateMean(const std::vector<double>& data) {
7  double sum = 0;
8
9  for (double value : data) {
10    sum += value;
11  }
12
13  return sum / data.size();
14}
15
16// Function to calculate the standard deviation of a vector
17// Using the population standard deviation formula
18double calculateStandardDeviation(const std::vector<double>& data) {
19  double mean = calculateMean(data);
20  double sum = 0;
21
22  for (double value : data) {
23    sum += pow(value - mean, 2);
24  }
25
26  return sqrt(sum / data.size());
27}
28
29int main() {
30  std::vector<double> data = {2.5, 1.3, 4.7, 3.2, 1.9};
31
32  double mean = calculateMean(data);
33  double standardDeviation = calculateStandardDeviation(data);
34
35  std::cout << "Mean: " << mean << std::endl;
36  std::cout << "Standard Deviation: " << standardDeviation << std::endl;
37
38  return 0;
39}
CPP
OUTPUT
:001 > Cmd/Ctrl-Enter to run, Cmd/Ctrl-/ to comment